Safety Data from a First-in-Human Phase 1 Trial of NKGD2 Chimeric Antigen Receptor T Cells in AML/MDS and Multiple Myeloma

Sarah Nikfardjoo1,2, Lillian Werner1, Joana Murad1, Matthew Jacobs1, Lauren Johnston1, Randie White1, Sarah Patches1, Heather Daley1, Helene Negre1, Jake Reder3, Charles L. Sentman1, Terri Wade3, Adam Schmucker2, Frédéric Lehmann5, Sarah Snykers5, Rachel Allen5, Heidi Cummings1, Ilene Galinsky1, Nikhil Munsch1,2, Robert Schlossman2, Richard Stone1,2, Donna Neuberg1, Robert Soiffer1,2, Glenn Dranoff2,3, Jerome Ritz2,3, Susanne Baumeister1,2,6

Abstract/Summary: This study employed a novel CAR fusing full-length human NKG2D with CD3ζ, that is capable of recognizing the multiple NKG2D ligands upregulated in multiple solid and hematologic malignancies.

Trial Design: A Phase 1 dose-escalation study was conducted to establish safety and feasibility of infusing NKG2D-CAR expressing T cells without lymphodepleting conditioning in subjects with AML/MDS-RARE or relapsed/refractory progressive multiple myeloma.

Results: From April 2015 through November 2016, 12 patients were infused in 4 cohorts from 1x10^6 to 3x10^6 NKGD2 CAR T cells. 7 subjects had AML/MDS.

Feasibility: CM-51 cells met release criteria in all cases. A median of 75.4% CD3+ T cells and 66.3% CD8+ T cells expressed the CAR construct.

Safety: No DLTs were seen.

Activity: At all these initial cell doses, there were no objective treatment responses at 28 days, although cases of unexpected survival without further therapy or in response to subsequent treatments were noted.

Post-infection monitoring: As anticipated from animal models, no CAR-T cell engraftment was detected, with one exception.

**Preliminary immune cell phenotyping and cytokine assays revealed no characteristic profiles except perhaps a transient spike in Rantes levels at 24 hours, specifically in patients with AML.

In vitro correlatives: All NKGD2 CAR-T products tested expressed IFNs in response to NKGD2 ligand-positive cell lines, and in 2 exploratory cases, against autologous CD34-containing PBMCs, and with NKG2D blocking antibodies.

Next steps: Correlative studies continue to elucidate in vivo function. Future studies of multiple infusions and higher doses of NKGD2 CAR-T cells in both hematologic malignancies and solid tumors is in planning to build upon these experiences.

NLKG2D (Natural Killer Group 2D)-expressing cells play a role in immune surveillance.

**NKGD2 is an activating receptor on natural and CAR Redirected T cells that can be recruited and expanded to completely replace wild-type lymphodepleting therapy and durable CD8+ T cell memory capable of protecting against tumor rechallenge, despite relatively short-term circulation in studies of CAR-T cells themselves.”

**NKG2D ligands consist of MHC Class I-related proteins MICA, MICB and ULBP binding proteins (ULBP1-6) and are found on multiple hematologic and solid malignancies but are largely absent on healthy tissue.”

**In syngeneic murine models of leukemia, myeloma, pancreatic cancer, melanoma, and ovarian cancer, adaptive therapy with NKGD2 CAR-T cells led to complete remissions without need for lymphodepleting therapy and durable CD8+ and CD4+ T cell memory.”

Objectives: Primary – Safety and feasibility

- Secondary – Progression-free survival and clinical anti-tumor effect

- ≥ 3 G3 non-hematologic toxicity or ≥ 2 Gr 4 CAR T cell-related autoimmunity

Response Criteria:

- **Safety Data from a First-in-Human Phase 1 Trial of NKGD2 Chimeric Antigen Receptor T Cells in AML/MDS and Multiple Myeloma**

Background

- NKGD2 (Natural Killer Group 2D)-expressing cells play a role in immune surveillance,

- NKGD2 is an activating receptor on natural and CAR Redirected T cells that can be recruited and expanded to completely replace wild-type lymphodepleting therapy and durable CD8+ T cell memory capable of protecting against tumor rechallenge, despite relatively short-term circulation in studies of CAR-T cells themselves.

- NKG2D ligands consist of MHC Class I-related proteins MICA, MICB and ULBP binding proteins (ULBP1-6) and are found on multiple hematologic and solid malignancies but are largely absent on healthy tissue.

- In syngeneic murine models of leukemia, myeloma, pancreatic cancer, melanoma, and ovarian cancer, adaptive therapy with NKGD2 CAR-T cells led to complete remissions without need for lymphodepleting therapy and durable CD8+ and CD4+ T cell memory capable of protecting against tumor rechallenge, despite relatively short-term circulation in studies of CAR-T cells themselves.

- All AML and MM patients had progressive disease or treatment failure.

- As of Dec, 2016, 7 of 12 subjects had died of their disease. Overall survival is 4.8 mos.

- 5 patients had “stable disease” in at least 1 parameter, and 4 each had “progressive disease” in at least 1 parameter.

- 1 patient (T7, AML, dose 1x10^6) demonstrated “stable disease” at 3 mos. He has improvement in all hematological parameters.

- Patient 7 (AML, dose 1x10^6), despite 50% blasts and p53 mutation at infusion, demonstrated relative peripheral blood hematologic stability for 3 months. Marrow results were not available.

- Patient 5 maintained stable disease (borderline on PR) for 8 mos. In an exploratory case of a patient with acute myeloid leukemia who had stable disease on multiple cycles of chemotherapy, patient had stable disease through the first 3 mos. of treatment.

- Patient 3 (MM, dose 1x10^6) demonstrated tumor progression (bordered on PR) in the marrow风筝 and spleen, but disease remained stable in the peripheral blood.

- No patients had disease progression subsequent to infusion reactions.

- Among AML/MDS and MM patients, a single dose of NKGD2 CAR-T cells without lymphodepleting therapy was feasible and well tolerated without DLTs over 28 days post infusion.

- Objective clinical responses were not seen. However, cases of unexpected survival and/or improvement in hematologic parameters were noted in both AML and MM patients, some with and without subsequent therapy.

- **Conclusion:**

Among AML/MDS and MM patients, a single dose of NKGD2 CAR-T cells without lymphodepleting therapy was feasible and well tolerated without DLTs over 28 days post infusion.

- Objective clinical responses were not seen. However, cases of unexpected survival and/or improvement in hematologic parameters were noted in both AML and MM patients, some with and without subsequent therapy.

NKGD2 CAR-T-specific activity against autologous tumor models was demonstrated in an in vitro study of 2 patients tested.

This paves the way for studies of multiple infusions and higher doses of NKGD2-expressing CAR-T cells in numerous malignancies.”