Phase 1 studies assessing the safety and clinical activity of autologous and allogeneic NKG2D-based CAR T therapy in metastatic colorectal cancer

Eric Van Cutsen 1, Jeroen Dekervel 1, Jean-Pascal H. Machiels 2, Marc Van Den Eynde 2, Hans Preng 3, Alain Hendriux 4, Leila Shaza 5, Javier Carrasco 6, Jean-Luc Canon 7, Panagiota A. Sotiropoulou 8, Eytan Brennan 9, Erik Alcantar 10, Anne Flamant 11

1. University Hospital Leuven (UZ Leuven), Leuven, Belgium; 2. Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium; 3. University Hospital Antwerp (UZ Antwerp), Antwerp, Belgium; 4. Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; 5. Grand Hôpital de Charleroi (GHIC), Charleroi, Belgium; 6. Celyad SA, Mont-Saint-Guibert, Belgium

INTRODUCTION

- Chimeric antigen receptor T-cell (CAR T-cell) therapies have achieved great efficacy in some very specific types of hematological malignancies. However, they have thus far failed to deliver significant objective responses in solid tumors likely due to the immune suppressive tumor microenvironment (TME) that renders infiltration and traffic of CAR T-cells extremely difficult.
- Current CAR T-cell therapies rely mostly on the patient’s own cells (autologous approach) associated with a high variability in the starting material and time pressure for manufacturing. The use of healthy donor cells (allogeneic approach) can circumvent these issues.
- Allogeneic reactivity is the primary concern for allogeneic CAR T-cell therapies due to: (i) host-versus-graft reaction (HvGR), and (ii) graft-versus-host disease (GvHD). The HvGR can be transiently controlled by chemotherapy enabling engraftment of the allogeneic CAR T cells.
- NKG2D CAR T-cells are CAR T-cells based on the natural full-length human natural killer group 2D (NKG2D) receptor fused to the intracellular domain of CD3ε, the former targeting 8 stress ligands whose expression is found in many types of solid cancers including colorectal cancer.
- Celyad is currently pursuing the clinical development of two NKG2D CAR T-cell product candidates: CAR-YD-01, autologous NKG2D CAR T-cells has been tested as a monotherapy without pre-conditioning chemotherapy and showed initial clinical responses including transient complete remissions in relapsed/refractory acute myeloid leukemia patients and transient stable disease in metastatic colorectal cancer (mCRC) patients (THINK study – NCT03018405) [1,2].
- CAR-YD-101, allogeneic counterpart of CAR-YD-01 using a non-gene editing technology (T-cell receptor [TCR]) inhibitor molecule, [TIP3] to prevent GvHD through inhibition of the TCR signal.

RESULTS

DEMOGRAPHICS

<table>
<thead>
<tr>
<th>Study</th>
<th>Age (years) [Mean (range)]</th>
<th>Gender [N (%)]</th>
<th>ECOG Grade [N (%)]</th>
<th>NKG2D+ [N (%)]</th>
<th>Nb. of patients with NKG2D+ treatment</th>
<th>Nb. of patients with prior treatment time for mCRC</th>
<th>Nb. of patients with prior treatment time (Mean (range))</th>
<th>Nb. of patients with s.i. FOXL1/FORFR1 (rechallenge)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHRINK STUDY (AUTOLOGOUS CYAD-01)</td>
<td>55 (53-71)</td>
<td>50 (2/3)</td>
<td>3/1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2/3</td>
<td></td>
</tr>
<tr>
<td>ALLOSHRINK STUDY (ALLOGENEIC CYAD-101)</td>
<td>56 (28-73)</td>
<td>60 (2/1)</td>
<td>3/1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

RELATED ADVERSE EVENTS (AE)

- No clinical evidence of GvHD has been recorded in the ALLOSHRINK study evaluating the allogeneic product candidate CYAD-101.
- The host versus graft reaction against the autologous CYAD-101 cells to be controlled as evidenced by the similar levels of CYAD-101 engraftment after 2nd and 3rd infusions.
- Both autologous CYAD-01 and allogeneic CYAD-101 concurrently administered with FOXL0 demonstrated a favorable safety profile with no reports of CRS > Grade 2, related serious adverse events, dose-limiting toxicities, nor on-target off-tumor toxicity.
- Initial observations of partial responses and stable disease with CYAD-01 (best overall response ≥ 3 months 1 PR, 6 SD of 9 total patients) and with CYAD-101 (1 PR, 3 SD of 6 total patients) provides encouragement for the combination of this CAR T-approach with FOXL0 in difficult-to-treat solid cancer M.
- Preliminary data show a dose-dependent effect on the cell kinetics with higher levels of engraftment with increasing doses of CAR T-cells for both the autologous CYAD-01 and allogeneic CYAD-101 product candidates.
- Noteworthy, the allogeneic CYAD-101 product appears to provide increased levels of relative engraftment time-averaged area under the curve compared to the autologous CYAD-01 product and not reported.
- To our knowledge, the ALLOSHRINK study is the first study analyzing an allogeneic CAR T-cell therapy in a solid cancer indication and our preliminary data show no evidence of GvHD.

CONCLUSIONS

- Two Phase I studies with a similar design are currently evaluating the safety and the engraftment of the two NKG2D CAR T-cell product candidates in mCRC patients:
- SHRINK study (NCT03310005) evaluates the autologous CAR T-cell product CYAD-01.
- ALLOSHRINK study (NCT03624229) evaluates the allogeneic CAR T-cell product CYAD-101.
- To our knowledge, the ALLOSHRINK study is the first study exploring the safety and tolerability of a non- edited, allogeneic CAR T-cell therapy in a solid cancer.
- The studies are conducted in the following mCRC patient populations (see also demographics below):
 - The SHRINK study is conducted in two different mCRC patient populations: (i) resectable liver dominant mCRC with FOXL0 chemotherapy as 1st line treatment (ie, neoadjuvant), and (ii) resectable mCRC with prior chemotherapy lines for mCRC including FOXL0 and/or FORFR1 (ie, rechallenge) population.
 - The ALLOSHRINK study is only conducted in the rechallenge population.
- SHRINK and ALLOSHRINK share the same study design:
 - Dose escalation with a Fibonacci 3+3 design;
 - Three dose levels (DL) of the NKG2D CAR T-cells: 1×10⁸, 3×10⁸ and 1×10⁹ cells per infusion; Note: recruitment in the ALLOSHRINK study at DL 3 is still ongoing and not reported.
 - Multiple intravenous CAR T-cell infusions at a 2-week interval administered at Day 3 of concurrent FOXL0 chemotherapy cycles.
 - FOXL0 is known to induce NKG2D ligand expression on CRC tumor cells, and (ii) induce a transient lymphodepletion that can facilitate CAR T engraftment. Together, these characteristics should enhance the activity of CYAD-01/CYAD-101 that could be combined with chemotherapy to produce greater clinical response rates.

CAR T-CELL PHARMACOKINETICS

- In the peripheral blood

BEST OVERALL RESPONSE

- Complete response (CR)
- Partial response (PR)
- Stable disease (SD) (≥ 3 months)
- Progressive disease (PD)

- In the tumor microenvironment

CONCLUSIONS

- No clinical evidence of GvHD has been recorded in the ALLOSHRINK study evaluating the allogeneic product candidate CYAD-101.
- The host versus graft reaction against the autologous CYAD-101 cells to be controlled as evidenced by the similar levels of CYAD-101 engraftment after 2nd and 3rd infusions.
- Both autologous CYAD-01 and allogeneic CYAD-101 concurrently administered with FOXL0 demonstrated a favorable safety profile with no reports of CRS > Grade 2, related serious adverse events, dose-limiting toxicities, nor on-target off-tumor toxicity.
- Initial observations of partial responses and stable disease with CYAD-01 (best overall response ≥ 3 months 1 PR, 6 SD of 9 total patients) and with CYAD-101 (1 PR, 3 SD of 6 total patients) provides encouragement for the combination of this CAR T-approach with FOXL0 in difficult-to-treat solid cancer M.
- Preliminary data show a dose-dependent effect on the cell kinetics with higher levels of engraftment with increasing doses of CAR T-cells for both the autologous CYAD-01 and allogeneic CYAD-101 product candidates.
- Noteworthy, the allogeneic CYAD-101 product appears to provide increased levels of relative engraftment time-averaged area under the curve compared to the autologous CYAD-01 product and not reported.
- To our knowledge, the ALLOSHRINK study is the first study analyzing an allogeneic CAR T-cell therapy in a solid cancer indication and our preliminary data show no evidence of GvHD.