A Phase 1 study assessing the safety and clinical activity of multiple hepatic transarterial administrations of an NKG2D-based CAR-T therapy, CYAD-01, in patients with unresectable liver metastases from colorectal cancer

Nathalie Braun1, Alain Hendizis2, Leila Shaza3, Michaël Vouche4, Vincent Donckier5, Philippe Alfimov6, Ahmad Awaad7, Caroline Lonnez8, Bikash Verma9, David E. Gilham9, Frederic F. Lehmann1

1Celyad, Mont-Saint-Guibert, Belgium; 2Medical Oncology Clinic, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; 3Department of Radiology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium; 4Celyad, Boston, MA

COLORECtAL CANCER (CRC)

1.4M new cases per year
3rd most common cancer in men
2nd most common cancer in women

50% of patients develop metastases
Liver is the most frequent site of metastases

100% express NKG2D ligand

90–90% eligible for surgery

Intra-arterial delivery of therapy may enable clinical activity and minimize toxicity

CYAD-01 (previously named NKR-1) is an adoptive cell therapy consisting of engineered T cells expressing a chimeric antigen receptor (CAR) based on the natural killer group 2 member D receptor (NKG2D), a transmembrane receptor expressed by natural killer cells and some T-cell subsets.

NKG2D binds to stress-inducible ligands frequently expressed on various cancer cells [1,2]:
- MIC class I (MICA/B) and NKG2D-Ligand
- Unique long binding protein (ULBP) 1–4 ligands

The CYAD-01 CAR is composed of the full-length human NKG2D fused to the CD3 epsilon cytoplasmic signaling domain (Figure 1).

The surface adapter molecule CD3a-activating protein of lL15a (DAP-10), which is endogenously expressed in T cells, associates with and stabilizes CYAD-01 CAR expression. Ligand binding to CYAD-01 triggers a primary signal via CD3 and a secondary signal via DAP-10, resulting in efficient T-cell activation and cytokine secretion (Figure 2).

CYAD-01 showed promising results in multiple preclinical models and in the clinic [3, Poster CT134].

Preclinical results indicate that CYAD-01 may have anti-tumor effects beyond direct cancer cell killing:
- Targeting neoantigen expression using NKG2D ligands
- Cytotoxic killing of immunosuppressive cells within the tumor microenvironment (TME) such as regulatory T cells and myeloid-derived suppressor cells expressing NKG2D ligands
- Recruiting and activating myelocytes and myeloid cells within the tumor stroma, causing a shift from an immunosuppressive to an immunostimulatory TME

CYAD-01 is being explored as a long-term memory immune response specifically towards tumor antigens.

CYAD-01 may be an effective therapy for solid and hematological tumor types that express NKG2D ligands and is currently being investigated in comprehensive clinical program (Figure 3).

FIGURES AND TABLES

TABLE 1: Key eligibility criteria

Table with criteria for inclusion and exclusion.

TABLE 2: Study endpoints

Table with primary and secondary endpoints.

FIGURE 1: CYAD-01 CAR construct

Diagram showing the CYAD-01 CAR construct.

FIGURE 2: CYAD-01 clinical development

Diagram illustrating the clinical development of CYAD-01.

FIGURE 3: CYAD-01 CAR T CELL THERAPY

Diagram depicting the therapy of CYAD-01 CAR T cells.

LINK STUDY RATIONALE

- CAR T cells targeting solid tumors face additional obstacles compared to those targeting hematological malignancies [10,11]:
 - Tissue-specific, dense tumor and stromal stroma
 - Intra-tumoral, low pH, and low nutrient conditions
 - Immunosuppressor milieu due to the activation of inhibitory immune checkpoint pathways, the secretion of anti-inflammatory factors, and the presence of immune suppressor cells
 - Delivery of CYAD-01 via the hepatic artery may enhance clinical activity while limiting systemic exposure and toxicity:
 - Increasing hormone of CYAD-01 to tumors, benefiting from the different blood supply to uninvolved liver parenchyma and to liver metastases
 - The release of tumor antigens via direct anti-cancer cytotoxicity may trigger the host immune system, boosting the adaptive immune response, thus potentially resulting in the control of distant lesions (abscopal effect)
 - Allowing the administration of higher doses compared to systemic delivery

LINK TRIAL DESIGN

- In (multifocal immunotherapy with NKG2D CAR T cells) is an open-label, dose escalation, phase 1 trial designed to assess the safety and clinical activity of CYAD-01 infused by hepatic transarterial administration in CRC patients with unresectable liver metastases.
- Patients will receive 3 doses of CYAD-01 at 2-week intervals (Figure 3).
- CYAD-01 will be assessed at 3 dose levels (1×107, 1×108, and 3×108 CYAD-01 cells per injection), according to a standard 3+3 design, to determine the maximum tolerated dose and the recommended phase 2 dose.
- Key eligibility criteria are shown in Table 1.
- Study endpoints are shown in Table 2.

Assessments:
- Tumor assessments will be performed by CT imaging or MRI at baseline and every week thereafter.

- Tumors will be assessed at baseline, 2 weeks post-CYAD-01 treatment, and at the time of hepatic metastases resection, if applicable.
- CYAD-01 and cytokines will be quantified in peripheral blood

- The first patient was recruited in January 2018.
- Patients are currently being enrolled at the Institut Jules Bordet, Brussels, Belgium.
- The estimated primary completion date is July 2020.