Cardiopoietic cell therapy for advanced ischemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial

1Cardiovascular Center, Onze-Lieve-Vrouweklini OLV Hospital, Moorselaan 164, Aalst, B-9300, Aalst, Belgium; 2Mayo Clinic, Center for Regenerative Medicine, Department of Cardiovascular Diseases, 200 First Street SW, Rochester, Minnesota 55905, USA; 3Momentum Research, Inc, Durham, NC, USA; 4National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece; 5University Hospital Center Bezanjicka Kosa, Belgrade, Serbia; 6Cardiology Clinic, Clinical Centre of Serbia, Medical School, University of Belgrade, Belgrade, Serbia; 7Semmelweis University Department of Cardiac and Vascular Diseases, John Paul II Hospital, Krakow, Poland; 8Third Division of Cardiology, Medical University of Silesia, Katowice, Poland; 9Gottsegen Gyorgy Hungarian Institute of Cardiology, Budapest, Hungary; 10Heart Institute, University of Pécs, Pécs, Hungary; 11Department of Cardiology, Barzilai Medical Center, Israel Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; 12Division of Cardiology, Centre Hospitalier Universitaire de Charleroi, Charleroi, Belgium; 13Cardiology Department, Clinical Hospital Zvezdara, Belgrade, Serbia; 14Department of Cardiology, University of Debrecen, Debrecen, Hungary; 15Department of Belgrade School of Medicine, Belgrade University Medical Center, Belgrade, Serbia; 16Clinic of Emergency Medicine, Military Medical Academy, School of Medicine, University of Defense, Belgrade, Serbia; 17Clinical Center Krugujevac, Krugujevac, Serbia; 18Department of Cardiology, Angiology, and Electrophysiology, City Clinic Heart and Vascular Institute, Sofia University, Sofia, Bulgaria; 19Faculty of Medicine in the Galiții, Bar-Ilan University, Safed, Israel; 20Heart Institute, Hillel Yaffe Medical Center, Hadera, Rappaport School of Medicine, Haifa, Israel; 21Faculty of Medicine, University of Lodz, Lodz, Poland; 22Hospital General Universitario Gregorio Marañón, Madrid, Spain; 23Medical Centre, Hungarian Defense Forces, Budapest, Hungary; 24Department of Cardiology, Centre Hospitalier Universitaire de Liège, Liège, Belgium; 25Department of Cardiology, Universite Catholique de Louvain, CHU UCL, Namur, Yvoir, Belgium; 26Department of Cardiology, AZ Glorioso, Ronse, Belgium; 27Cardiocentro Ticino, Lugano, Switzerland; 28Department of Cardiology, Hospital Clinico San Carlos, Madrid, Spain; 29Hospital Universitari Germans Trias i Pujol, Universitat Autònoma, Barcelona, Spain; 30Hospital Clinico Universitario Virgen de la Victoria, Malaga, Spain; 31Department of Cardiology, University of Verona, Italy; 32Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland; 33Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; 34School of Medicine, University of California San Francisco and Section of Cardiology, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; 35Duke Clinical Research Institute and Duke Medicine, Durham, NC, USA; 36Cedars Sinai Heart Institute, Los Angeles, CA, USA; 37Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University and Spedali Civili, Brescia, Italy; 38Mount Sinai School of Medicine, New York, NY, USA; 39Celyad, Mont Saint Guibert, Belgium; 40Departments of Clinical Research and Pharmacy Practice, Campbell University College of Pharmacy and Health Sciences, Cary, NC, USA; and 41The Lambe Institute for Translational Medicine and Currm, National University of Ireland Galway and Saolta University Healthcare Group, Galway, Ireland

Received 23 August 2016; revised 22 September 2016; editorial decision 18 October 2016; accepted 2 November 2016

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Aims
Cardiopoietic cells, produced through cardiogenic conditioning of patients’ mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort.

Methods and results
This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death.

Conclusion
The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted.

Keywords
Regenerative medicine • Cardiopoiesis • Cardiovascular disease • Stem cell • Target population • Disease severity • Marker • Precision medicine

Introduction
Heart failure is a leading cause of mortality and morbidity; it limits quality of life and imposes a major societal burden.1 Ischemic heart disease underpins two-thirds of all systolic heart failure.2 Extensive myocardial remodelling and chamber enlargement portend poor outcomes, and standard treatments are often insufficient in such patients.3 Cardiac transplantation or destination mechanical circulatory support remains high-risk therapeutic options that are further limited by donor availability, patient eligibility, and cost.4 By targeting myocardial restoration, cell-based therapies are alleged paradigm-shifting alternatives.5,6 Clinical trials document reassuring feasibility and safety yet inconsistent efficacy, ascribed in part to unpredictable potency of cell products and limited retention.7,8 These shortcomings impede advancement into cardiovascular practice.

Strategies for cell therapy optimization9 include myocardial priming to improve cell homing.10 exploiting resident cell populations11 or leveraging combined cell regimens.12,13 Guided cardiopoiesis is a recent option that enhances the cardioreparative functionality of patient-derived mesenchymal stem cells (MSC) and induces a restorative response in failing hearts.14 The cardiopoietic phenotype demonstrated promise in proof-of-concept studies15 and in the Cardiopoietic Stem Cell Therapy in Heart Failure (C-CURE) clinical trial.16

The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial was executed to validate the efficacy and safety of cardiopoietic cells delivered via an enhanced retention performance catheter17 in a larger population with advanced symptomatic heart failure of ischemic aetiology.18

Methods
Study design
The CHART-1 study is a prospective, multicentre, randomized, sham-controlled, patient- and evaluator-blinded clinical trial. Investigators at 39 centres in Europe and Israel participated (Figure 1 and Supplementary material online, Section 1). Ethics committee approvals were obtained for each participating centre. The CHART-1 trial was registered with clinicaltrials.gov (NCT01768702) and EudraCT (2011-001117-13). The study design has previously been described,18 and the study protocol is provided in Supplement 2.

Patients
Eligible patients gave written informed consent prior to any study-related procedures. Patients were not compensated for participation except for travel expenses. Patients were ≥ 18 to < 80 years old with left ventricular ejection fraction (LVEF) ≤ 35% (locally interpreted echocardiograms were used for screening), ischemic heart failure without need for revascularization, heart failure hospitalization, or outpatient vasoactive heart failure therapy (e.g. vasodilators, positive inotropic agents, vasoressors or diuretics) within 12 months, in New York Heart Association (NYHA) class II or greater at screening, and with NYHA class III or IV or Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) class ≥ 4 within 12 months.18 Guideline-directed medical therapy, a 6-min walk distance > 100 to ≤400 m and Minnesota Living with Heart Failure Questionnaire (MLHFQ) score > 30 were required. Acute coronary syndrome or percutaneous coronary intervention within 90 days, or coronary artery bypass graft surgery within 180 days were exclusions.18 Eligible patients were scheduled for bone marrow harvest and MSC expansion.

Approximately 2 weeks after screening, bone marrow (~65–85 mL) was collected from the iliac crest and shipped to a central production
facility (Celyad, Mont-Saint-Guibert, Belgium). If the bone marrow was of insufficient quantity, contaminated, or did not reach pre-specified cell production criteria, the harvest could be repeated. Patients with a second inadequate cell expansion or those who refused a second bone marrow harvest were discontinued from further participation.

Randomization and masking

Patients were randomized 1:1 to cardiopoietic cell injection or a sham control procedure after confirmation by the central production facility that > 24 million MSCs were achieved according to pre-specified release criteria. An Interactive Web Randomization Service was used according to a central randomization scheme (produced by Harvard Clinical Research Institute, Boston, Massachusetts) stratified by study centre with random permuted blocks within each centre. Patients and evaluators were blinded to study group assignment (eMethods in Supplementary material online, Section 2.1).

Procedures

MSCs for patients randomized to active treatment were processed for lineage specification to derive cardiopoietic cells (eMethods in...
Supplementary material online, Section 2.2). Patients whose cell product did not meet release criteria because of inadequate identity, potency, content, purity, homogeneity, or microbiological content (eMethods in Supplementary material online, Section 2.2.2) received a sham procedure (Figure 1). Cryopreserved cardiopoietic cell batches meeting release criteria (C3BS-CQR-1 manufactured by Celyad, Mont-Saint-Guibert, Belgium) were shipped frozen to sites and reconstituted within 6 h before injection. Cardiopoietic cells were delivered using standard cardiac catheterization procedures and a cell retention-enhanced injection catheter (C-Cath®TM; Celyad, Mont-Saint-Guibert, Belgium). Intramyocardial injections (~0.5 mL each, ~1 cm apart) were made into left ventricle areas with wall thickness ≥ 8 mm, avoiding the apex and segments adjacent to the mitral or aortic valves. Target zones were mapped using biplane left ventricular angiography integrating preceding echocardiography information regarding wall thickness. A sham procedure, incorporating insertion of an introducer sheath, left ventricular angiography and pigtail catheter movements, was performed for patients randomized to the control group and in the patients whose cell product did not meet pre-specified release criteria.

Follow-up visits were conducted by the blinded investigator team. Pre-procedure (baseline), 26 and 39-week echocardiograms were assessed centrally by a blinded core laboratory (eMethods in Supplementary material online, Section 2.3).

Outcomes
The primary efficacy outcome was a hierarchical composite assessed at 39 weeks post-procedure comprising all-cause mortality (days to death), the number of worsening heart failure events (0, 1, or ≥ 2), MLHFQ score (≥ 10 point improvement, ≥ 10 point deterioration, or no meaningful change), 6-min walk distance (≥ 40 m improvement, ≥ 40 m deterioration, or no meaningful change), left ventricular end-systolic volume (LVESV) change (≥ 15 mL improvement, ≥ 15 mL deterioration, or no meaningful change), and LVEF change (≥ 4% absolute improvement, ≥ 4% absolute deterioration, or no meaningful change as assessed by the echocardiographic core laboratory). Left ventricular assist device (LVAD) implantation or urgent heart transplantation was considered cardiac deaths for the efficacy analyses.

Safety assessment through Week 39 included all-cause mortality, rehospitalization, cardiac transplantation, myocardial infarction, stroke, aborted sudden death (resuscitated sudden death or appropriate implantable cardioverter defibrillator [ICD] shocks), and serious and non-serious adverse events.

Statistical analysis
The primary outcome was compared between groups using a Mann–Whitney estimator (the probability of a better response in the active treatment group plus half the probability of a tie) of 0.61 (values > 0.5 favour active treatment). This treatment effect corresponds to a Mann–Whitney odds of 1.56, the relative probability of a better outcome on active treatment than on control. Homogeneity of the treatment effect across subgroups was assessed using chi-square tests computed from Mann–Whitney estimators and their corresponding variances in the subgroups. Post-hoc subgroup analyses evaluated treatment effect by baseline severity markers including left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), MLHFQ score, 6-min walk distance, and LVEF. Subpopulation Treatment Effect Pattern Plots (STEPPs) were used to evaluate the potential effect of treatment by baseline severity markers.

Safety analyses included all patients according to the treatment received. Kaplan–Meier estimates of event rates through Week 39 and hazard ratios and 95% confidence intervals (CI) from Cox regression models are presented; groups were compared using log-rank tests.

Means ± standard deviation (SD) or median, and interquartile range (IQR), are presented for continuous variables, and geometric mean and 95% CI for log-transformed variables. Analyses are based on the data when the last patient to have a study procedure reached Week 39. SAS® (Cary, North Carolina, USA) version 9.3 was used for analyses.

A blinded Clinical Events Committee (CEC) adjudicated all deaths, worsening heart failure events, strokes, myocardial infarctions, and aborted sudden deaths from randomization (eMethods in Supplementary material online, Section 2.3). An independent interventional cardiologist adjudicated the relatedness of peri-procedural serious adverse events to the injection catheter, the catheterization procedure, and the cardiopoietic cell product. An independent Data Safety Monitoring Board (DSMB) reviewed ongoing safety reports, evaluated safety of the delivery device when the first 46 patients had 4 weeks follow-up, and reviewed safety data and a futility analysis when 120 patients had at least 13 weeks follow-up (eMethods in Supplementary material online, Section 2.3).

Results
Study population
Screening began 18 December 2012 and the last injection procedure (cardiopoietic cell therapy or sham) was performed 31 July 2015. A total of 484 patients provided informed consent to undergo eligibility screening, and 348 underwent bone marrow harvest (Figure 1). Adequate MSC expansion was achieved in 315 patients, and they were randomized to cardiopoietic cell therapy (n = 157) or sham control procedure (n = 158). Of these, 120 patients underwent injection of cardiopoietic cells and 151 had the sham procedure (Figure 1).

Baseline characteristics were well-balanced between the groups (Table 1). The mean ± SD age was 61.9 ± 8.6 years, 89.7% were men, and all were white. Eighty-five percent of patients had been hospitalized for heart failure within the previous year, and 21.8% were in NYHA Class II at screening. The mean ± SD centrally-assessed LVEF was 27.9 ± 7.0%. Patients were well-treated with guideline-directed medical and device therapy (Table 1) that remained consistent during follow-up (eFigure 2 in Supplementary material online, Section 3.1).

The mean ± SD time between randomization and the study procedure was 59.8 ± 21.6 and 53.9 ± 11.7 days in patients randomized to and who received the active treatment vs. the sham procedure, respectively. The mean ± SD time between randomization and the sham procedure was 59.8 ± 21.6 and 53.9 ± 11.7 days respectively.

A sample size of 120 patients per group was estimated to provide 87% power to detect a treatment effect corresponding to a Mann–Whitney estimator (the probability of a better response in the active treatment group plus half the probability of a tie) of 0.61 (values > 0.5 favour active treatment).

Safety analyses included all patients according to the treatment received. Kaplan–Meier estimates of event rates through Week 39 and hazard ratios and 95% confidence intervals (CI) from Cox regression models are presented; groups were compared using log-rank tests.

Means ± standard deviation (SD) or median, and interquartile range (IQR), are presented for continuous variables, and geometric mean and 95% CI for log-transformed variables. Analyses are based on the data when the last patient to have a study procedure reached Week 39. SAS® (Cary, North Carolina, USA) version 9.3 was used for analyses.

A blinded Clinical Events Committee (CEC) adjudicated all deaths, worsening heart failure events, strokes, myocardial infarctions, and aborted sudden deaths from randomization (eMethods in Supplementary material online, Section 2.3). An independent interventional cardiologist adjudicated the relatedness of peri-procedural serious adverse events to the injection catheter, the catheterization procedure, and the cardiopoietic cell product. An independent Data Safety Monitoring Board (DSMB) reviewed ongoing safety reports, evaluated safety of the delivery device when the first 46 patients had 4 weeks follow-up, and reviewed safety data and a futility analysis when 120 patients had at least 13 weeks follow-up (eMethods in Supplementary material online, Section 2.3).
The median duration was 112.0 (IQR 78.0–157.5) minutes for the injection procedure and 36.0 (IQR 17.0–66.0) minutes for the sham procedure. The treatment group received a median of 19 (IQR 17–20) injections with a median injection volume of 9.6 (IQR 8.5–10) mL.
Primary end-point

The hierarchical composite primary endpoint across the total study cohort was neutral (Mann–Whitney estimator 0.54, 95% CI 0.47–0.61, \(P = 0.27 \)) (Figure 2, panel A, eTable 1 in Supplementary material online, Section 2.4.2), corresponding to a Mann–Whitney odds of 1.17 (95% CI 0.89–1.55). No significant between-group differences were noted for individual components of the primary outcome, but a signal for a benefit was observed across the categories of change in 6-min walk distance (\(P = 0.07 \)) (Table 2).

Subgroup analysis

The response was similar according to sex (homogeneity \(P = 0.43 \)), age (homogeneity \(P = 0.25 \)), NYHA class (homogeneity \(P = 0.69 \)), and geographic region (homogeneity \(P = 0.71 \)). The effect of active treatment according to baseline heart failure severity was examined in post-hoc, exploratory analyses. A suggestion of efficacy for the active treatment was noted in patients with LVEDV, LVESV, or MLHFQ in post-hoc, exploratory analyses. The corresponding Mann–Whitney odds was 1.57 (95% CI 1.09–2.35).

Safety

Of the 120 patients undergoing study injections, 106 were without incident and 14 experienced catheter-procedure related serious adverse events. Of the 14 patients, each developed one of the following: ventricular tachyarrhythmia (4 sustained, responsive to cardioversion), left bundle branch block (3 sustained, 2 receiving cardiac resynchronization therapy [CRT] for persistent heart failure 2 and 4.5 months after injection, respectively), dissection of the ascending aorta requiring surgery (in a patient with known calcific and dilated thoracic aorta, occurring prior to the procedure while catheter was introduced), transient ischemic attack (1 with aphasia; normal head computerized tomography [CT] scan and resolution by 48 h), femoral artery stenosis (1 with claudication; sub-total occlusion at site of closure device implantation, managed medically), and pericardial effusion (4, three with tamponade responsive to drainage, 1 without hemodynamic consequences resolving spontaneously). No cases of pericardial tamponade occurred in the final 72 active cases after additional procedural training and oversight.

Cardiac markers (CK-MB and high-sensitivity cardiac troponin T [hs-cTnT]) were increased at 6 and 24 h following the cell injection procedure. At 6 h, CK-MB had increased a median of 3.35 (IQR -0.600–59.800) \(\mu \)g/L in the active treatment group, compared to a median change of -0.20 (IQR -11.200–8.800) \(\mu \)g/L in the control group. At 24 h, median changes were 0.90 (IQR 0.1–1.8) and -0.30 (IQR -0.80–0.00) \(\mu \)g/L in patients treated with active and sham control, respectively, a ratio of 2.08 (\(P < 0.001 \)). The median change in hs-cTnT at 6 h was 0.088 (IQR 0.04–0.151) \(\mu \)g/L in the cardiopoietic cell treatment group and 0.001 (IQR -0.002–0.003) \(\mu \)g/L in the sham control. At 24 h, the median change from baseline was 0.059 and
0.001 μg/L in the active treatment and sham control group patients, respectively (P < 0.001). At Week 39, hs-cTnT levels were comparable: the median change was 0.001 μg/L in both groups, treatment ratio 1.014, 95% CI 0.901–1.142.

Adjudicated clinical endpoints and investigator-reported adverse events through Week 39 according to the actual treatment received (i.e. the 19 patients randomized to active who received a sham procedure are included in the sham group) are shown in Table 3. Similar proportions of patients died who underwent the active treatment and sham procedure (HR 1.02, 95% CI 0.45–2.29). The adjudicated causes of death were similar, although sudden cardiac death occurred in no patient in the cardiopoietic cell treatment group and in 4 patients who underwent the sham procedure. Aborted or sudden cardiac death occurred in 1 (0.9% [Kaplan–Meier estimated risk]) cardiopoietic cell treatment patient and 9 (5.4%) of sham control patients (HR 0.16, 95% CI 0.02–1.23, P = 0.04). One patient who received active

Table 2 Components of the primary efficacy endpoint in the total cohort and subpopulation with elevated left ventricular end-diastolic volume

<table>
<thead>
<tr>
<th>Total cohort</th>
<th>Patients with baseline left ventricular end-diastolic volume 200–370 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total cohort Patients with baseline left ventricular end-diastolic volume 200–370 mL</td>
</tr>
<tr>
<td></td>
<td>Cardiopoietic cell treatment</td>
</tr>
<tr>
<td>n = 271</td>
<td>n = 120</td>
</tr>
<tr>
<td>All-cause mortality through Week 39 (Kaplan–Meier %)</td>
<td></td>
</tr>
<tr>
<td>Worsening heart failure events</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>≥2</td>
<td></td>
</tr>
<tr>
<td>Change in MLHFQ total score from baseline</td>
<td></td>
</tr>
<tr>
<td>≥10-point improvement (decrease)</td>
<td></td>
</tr>
<tr>
<td>≥10-point deterioration (increase)</td>
<td></td>
</tr>
<tr>
<td>Change in 6-min walk distance from baseline</td>
<td></td>
</tr>
<tr>
<td>≥40 m improvement (increase)</td>
<td></td>
</tr>
<tr>
<td>≥40 m deterioration (decrease)</td>
<td></td>
</tr>
<tr>
<td>Change in LVEF from baseline</td>
<td></td>
</tr>
<tr>
<td>≥4% absolute improvement (increase)</td>
<td></td>
</tr>
<tr>
<td>≥4% absolute deterioration (decrease)</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed as number (percent). Hazard ratio (HR) for active treatment vs. control is provided for mortality. The Mann–Whitney (M-W) odds for worse outcome in active vs. control is given for ordered categories. Values <1.0 favour active treatment. LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; MLHFQ, Minnesota Living with Heart Failure Questionnaire. *n reflects the number of patients with data.
Markers should be considered for future clinical trials and/or potential clinical application of cell therapy in patients with heart failure. Indeed, a call for a focus on precision medicine has been issued, where clinical studies would target well-defined patient populations to improve development of effective cardiovascular treatments.

The CHART-1 study corroborates, in a larger heart failure cohort, the feasibility, safety and initial efficacy signals detected in the C-CURE trial. Clinical surveillance documented safety through 39 weeks without excess adverse events attributable to cardiopoietic cell therapy. Peri-procedural events in the CHART-1 trial were consistent with well-established complications of left heart catheterization and/or intramyocardial injection, which can spike with the introduction of a new device but generally recede as interventional experience and procedural volume accrue. Notably, a significantly lower incidence of sudden or aborted sudden deaths was documented in cardiopoietic cell-treated patients compared to controls, underpinning clinical safety across both C-CURE and CHART-1 trials.

Heart failure clinical trial experience points to inter-trial and inter-patient variability in cell therapy outcomes. Recognizing that only a limited number of patients with ischemic heart disease harbors reparative stem cells, processes have been introduced to optimize reparative outcome. The ixCELL-DCM trial is a recent example where a reduction in adjudicated clinical cardiac events in ischemic cardiomyopathy was documented after delivery of an expanded multicellular product. Leveraging the cardiopoiesis platform in conjunction with a novel catheter fitted with a curved needle delivery system, the CHART-1 clinical experience advances current knowledge by identifying disease severity as a potential modifier of cell therapy benefit.

In this regards, heart failure is a progressive and heterogeneous syndrome where conventional symptoms or ejection fraction often fail to identify patients that optimally respond to a therapy. Non-uniform responses in advanced heart failure have been reported in a spectrum of therapies including revascularization, interventions targeting functional mitral regurgitation or CRT. Of note and consistent with the CHART-1 findings, the degree of baseline LV enlargement has previously been detected as a modifying factor influencing therapeutic responsiveness to patients undergoing CRT, where the response was most robust in patients with LV end-diastolic volume index >125 mL/m². The relationship between left ventricular volumes and clinical outcomes in heart failure is well recognized. The CHART-1 study extends these findings by defining a range of LVEDV that appeared to segregate heart failure patients with the highest potential to benefit from cell-based therapy.

Evidence from the CHART-1 experience, in the context of prior knowledge with other therapies and recent proposals to streamline clinical development, suggests that heart failure management should be patient-tailored based on disease severity markers, such as degree of left ventricular dilation.

The present data should be interpreted in the context of the following limitations. Use of a composite primary endpoint was intended to increase the statistical precision of the trial, yet if an important component of the composite outcome is not substantially modified by the treatment then the statistical power to detect effects on the overall composite may be reduced. Indeed, neutrality in the primary hierarchical composite endpoint within the overall study population was related primarily to a neutral effect on all-cause mortality or worsening heart failure. This finding may reflect the 39-week
time point for the primary outcome. In this context, longer follow-up is planned to evaluate the effect of cardiopoietic cell therapy. Eighteen patients initially randomized to the cardiopoietic cell group did not meet cardiopoietic cell release criteria and the procedure was contraindicated in one patient; these patients received a sham procedure and were not included in the primary efficacy analysis. This approach assesses the effect of cardiopoietic cells in those patients who actually received them. The result of an analysis in a modified intent-to-treat set, which included the process failures who underwent a sham procedure in the active group for analysis, was nearly identical (Mann–Whitney estimator 0.54, \(P = 0.283 \)) to that of the primary endpoint (Mann–Whitney estimator 0.54, \(P = 0.27 \)). STEPP was used to identify the influence of LVEDV on the primary endpoint. This approach is methodologically preferred compared to conventional post-hoc analysis, as STEPP constructs overlapping subpopulations along the continuum of the covariate, improving the precision of the estimated treatment effects.\(^\text{31}\) LV volumes and function were assessed by transthoracic echocardiography using established guidelines.\(^\text{18}\) To minimize reproducibility issues, measurements were performed by a trained single echocardiographer per center with central core analyses. Although inadequate bone marrow aspiration or suboptimal outcome of the production process preventing cell product release occurred, these are expected to diminish as the technology and procedural experience matures. Finally, the study population was Caucasian and predominantly male. The present findings should be confirmed in subsequent studies with broader representation of women and non-Caucasian racial groups.

Figure 4 Subpopulation treatment effect pattern plot by markers of disease severity. Subpopulation Treatment Effect Pattern Plots (STEPPs) were used to further evaluate the potential effect of treatment according to baseline markers of disease severity. This figure shows the STEPP results according to baseline MLHFQ score (panel A), baseline LVEDV (panel B), baseline 6-min walk distance (panel C), and baseline LVESV (panel D).

Conclusions

The CHART-1 study is the largest cardiovascular regenerative medicine clinical trial to date that addresses the efficacy and safety of cardiopoiesis-based cell therapy in ischemic heart failure. The trial

![Figure 4](image-url)
Table 3 Mortality and cardiovascular events and adverse events through 39 weeks\(^a\)

<table>
<thead>
<tr>
<th>Category</th>
<th>Cardiopoietic cell treatment n = 120</th>
<th>Sham control n = 170(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total deaths(^1)</td>
<td>10 (8.3)</td>
<td>14 (8.2)</td>
</tr>
<tr>
<td>During hospitalization for study procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular – other CV event</td>
<td>1 (0.8)</td>
<td>0</td>
</tr>
<tr>
<td>After hospitalization for study procedure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular death</td>
<td>9 (7.6)</td>
<td>12 (7.1)</td>
</tr>
<tr>
<td>Heart failure/ cardiogenic shock</td>
<td>6 (5.0)</td>
<td>7 (4.2)</td>
</tr>
<tr>
<td>Sudden cardiac death</td>
<td>0</td>
<td>4 (2.4)</td>
</tr>
<tr>
<td>Acute MI</td>
<td>1 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Undetermined cause</td>
<td>1 (0.9)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Non-cardiovascular death</td>
<td>0</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Infection</td>
<td>0</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Non-fatal events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac transplantation</td>
<td>1 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>During hospitalization for study</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>After hospitalization for study</td>
<td>1 (0.9)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Stroke</td>
<td>1 (0.8)</td>
<td>0</td>
</tr>
<tr>
<td>After hospitalization for study</td>
<td>2 (1.8)</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>Aborted sudden cardiac death</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>During hospitalization for study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After hospitalization for study</td>
<td>1 (0.9)</td>
<td>5 (3.0)</td>
</tr>
<tr>
<td>Adverse Events Reported by interventions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE related to cardiopoietic cells or sham</td>
<td>4 (3.4)</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>AE related to the catheter as reported by</td>
<td></td>
<td></td>
</tr>
<tr>
<td>investigator</td>
<td>12 (10)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Serious AE</td>
<td>17 (14.1)</td>
<td>3 (1.8)</td>
</tr>
<tr>
<td>Serious AE with fatal outcome</td>
<td>2 (1.7)</td>
<td>0</td>
</tr>
<tr>
<td>Adverse Events Reported by evaluators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE related to cardiopoietic cells or sham</td>
<td>52 (52.5)</td>
<td>90 (53.0)</td>
</tr>
<tr>
<td>AE related to the catheter as reported by</td>
<td>4 (2.4)</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>investigator</td>
<td>12 (10)</td>
<td>1 (0.6)</td>
</tr>
<tr>
<td>Serious AE</td>
<td>17 (14.1)</td>
<td>3 (1.8)</td>
</tr>
<tr>
<td>Serious AE with fatal outcome</td>
<td>2 (1.7)</td>
<td>0</td>
</tr>
</tbody>
</table>

Data are expressed as number (percent). AE, adverse event; CV, cardiovascular; MI, myocardial infarction.
\(^a\)Kaplan-Meier \(\%\).
\(^b\)Safety set comprised of 151 sham control and 19 patients who did not meet cardiopoietic cell release specifications or had a contraindication but underwent sham procedure.
\(^1\)Note the number of deaths shown in Figure 1 is different from the values shown in this table, because Figure 1 includes 4 deaths (1 in patients randomized to and treated with active, 2 randomized to and treated with sham, and 1 randomized to active and treated with sham) who died after day 273 but before a Week 39 visit could be performed. Thus, they are included in the patient disposition figure based on visit completion, but they are not included in calculation of Week 39 (or day 273) event rates. There were a total of 24 deaths by day 273: 10 in patients randomized to and treated with active, 11 randomized to and treated with sham, and 3 randomized to active and treated with sham. There were 2 additional patients who had an urgent LVAD placed, but who did not die by day 273: 1 patient randomized to and treated with active, and 1 patient randomized to and treated with sham. These urgent LVAD placements were considered deaths in the efficacy analyses.

Collaborators

Clinical investigators and sites

Ireland: HRB Clinical Research Facility: F. Sharif (Principal Investigator), Y. M. Smyth

Israel: Western Galilee Hospital; S. Altar (Principal Investigator), A. Shturman, L. Akria, M. Kilinmin, M. Brezins; Ziv Medical Center: M. Halabi (Principal Investigator), N. Dally, a. Goldberg, K. Aeshab, I. Rosenfeld, T. Levinas, D. Saleem; Barzilai Medical Center: A. Katz (Principal Investigator), T. Plaev, T. Drogenkov, A. Nemetz, Y. Barshay, J. Jafari, I. Orlov; Nazareth Hospital EMMS: M. Omory (Principal Investigator), N. Kogan Nielsen; Hillel Yaffe Medical
Funding

This work was supported by Celyad, SA (Mont-Saint-Guibert, Belgium).
Celyad has received research grants from the Walloon Region (Belgium, DG06 funding).

Conflict of interest: Dr. Bartunek: Employed by an institution (Cardiovascular Centre, OLV Hospital) which has been co-founder of Cardio3Biosciences (now Celyad); all consultancy/speakers fees and research contracts are directed to Cardiovascular Onderzoek and Cardiac Research Institute, Aalst, Belgium.

Dr. Terzic: Research grants, administered by Mayo Clinic, from Marriott Foundation, Michael S. and Mary Sue Shannon Family, Russ and Kathy VanCleve Foundation, Leducq Fondation, Florida Heart Research Institute, Celyad, and National Institutes of Health. Dr. Terzic is listed as a co-inventor on patents US 2008019944 and US 2012100533. Mayo Clinic has rights to future royalties from Celyad.

Dr. Davison: Research grants from Celyad, Novartis, Singulex, ChanRx, Laguna Pharmaceuticals, Sorbent Therapeutics, Trevena, Inc.; personal fees from Novartis.

Dr. Filipatos: Personal fees from committee participation from Novartis, Bayer, Vifor, Servier.

Dr. Merkely: Research grant from Boston Scientific; personal fees from Boston Scientific and Novartis.

Dr. Wójcik: Proctoring fees from Celyad.

Dr. Horvath: Personal fees from University of Pecs, Pecs, Hungary.

Dr. Katz: Research support from Celyad as a participating center in CHART-1.

Dr. Arandjelovic: Research support from Celyad as a participating center in CHART-1.

Dr. Vanderheyden: Employed by an institution (Cardiovascular Centre, OLV Hospital) which has been co-founder of Cardio3Biosciences (now Celyad). All consultancy/speakers fees and research contracts are directed to Cardiovascular Onderzoek and Cardiac Research Institute, Aalst, Belgium.

Dr. Jagic: Research grants from Celyad paid to institution and research team for conducting the study.

Dr. Kasprzak: Fees received from Celyad as trial investigator.

Dr. Sanz Ruiz: Personal fees from Celyad.

Dr. Heynridiclo: Employed by an institution (Cardiovascular Centre, OLV Hospital) which has been co-founder of Cardio3Biosciences (now Celyad). All consultancy/speakers fees and research contracts are directed to Cardiovascular Onderzoek and Cardiac Research Institute, Aalst, Belgium.

Dr. Jimenez-Quevedo: Research support from Celyad as a participating center in CHART-1.

Dr. Gruchala: None declared.

Dr. Waldman: Research grants from NIH, Synamex, Merck, Targeted Diagnostics & Therapeutics, Inc. (Scientific Advisory Board), Synergy Pharmaceuticals; Personal fees (Data Monitoring Board) from Celyad, Immunovative Therapies LTD (Scientific Advisory Board), US Food and
Drug Administration (Advisory Committees), American Society for Clinical Pharmacology and Therapeutics (editor), NIH (reviewer), Scientific Foundation Ireland (reviewer), Synergy Pharmaceuticals (consultant); non-financial support from Ironwood Pharmaceuticals (Biologic reagents).

Dr. Teerlink: Research grant from Celyad (chairperson, CHART-1 Clinical Events Committee); Research grants from Amgen, Bayer, BMS, Cytokinetins, Mast Therapeutics, Medtronic, Novartis, Trevena; Personal fees and non-financial support from Amgen, Bayer, BMS, Mast Therapeutics, Novartis, Relypsa, Trevena, Z5 Pharma; Non-financial support from Medtronic.

Dr. Gersh: Consultant for Celyad.

Dr. Povis: Research grant from Celyad to Duke Medicine (employer); Research grant from Baxter Healthcare; personal fees from Pluristem, Capricor.

Dr. Henry: Steering committee member, CHART-1 trial.

Dr. Metra: Personal fees for consulting honoraria as advisory board of Scientific Committee member from Amgen, Bayer, Novartis, Servier, Relypsa.

Dr. Tendera: Personal fees from Celyad (Steering Committee activities), Bayer (consulting and lecture fees), Janssen Cilag (consulting fees), Novartis (consulting fees), Servier (consulting and lecture fees); research grants from Polish National Center for Research and Development and EU Framework program VII (related to cell therapy and research outside the area of interest).

Dr. Behfar: Research grants, administered by Mayo Clinic, from Russ and Kathy VanCleve Foundation, Michael S. and Mary Sue Shannon Family, Marriott Foundation, and Celyad. Dr. Behfar is listed as co-inventor on patents US 20080019944 and US 20120100533. Mayo Clinic has rights to future royalties from Celyad.

B. Alexandre: Employee of Celyad.

Dr. Seron: Employee of Celyad.

Dr. Stough: Personal fees for consulting to European Society of Cardiology, Heart Failure Association of the European Society of Cardiology, European Drug Development Hub, Relypsa, CHU Nancy, Heart Failure Society of America, Overcome, Stealth BioTherapeutics, University of North Carolina, Respicardia, and Celyad.

Dr. Sherman: Employee of Celyad; consulting fees from Ventrix, Inc.

Dr. Cotter: Research grants from Celyad, Novartis, Singulex, ChanRx, Laguna Pharmaceuticals, Sorbent Therapeutics, Trevena, Inc.; personal fees from Novartis.

Dr. Wijns: Institutional grants and support for research from Celyad. Cardiovascular Research Center Aalst was a co-founder of Cardio3Biosciences, now Celyad. Shareholder and non-executive Board member of Argonauts and Genac Inc. Past Board member and past shareholder of Cardio3Biosciences. Cardiovascular Research Center Aalst has received research grants on behalf of W. Wijns from several device companies (outside the submitted work).

Trial Registration: clinicaltrials.gov (NCT01768702) and EudraCT (2011-001117-13).

References

Cardiopoietic cell therapy for advanced ischemic heart failure

27. Bax JJ, Schinkel AF, Boersma E, Elhendy A, Rizzello V, Maat A, Roelandt JR, van der Wall EE, Poldermans D. Extensive left ventricular remodeling does not allow visible myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis. Circulation 2004;110:II18–II22.

